

ARCADIS

Flooding in Hoboken, NJ in April 2007

Integrating Green and Gray Infrastructure for Stormwater Management and Flood Risk Reduction

7th Annual Texas Regional Stormwater Conference New Braunfels, Texas January 16, 2025

ARCADIS

Old Water Management Prospective

Key Flood Control Issues

- Designing and adapting to larger and more frequent storm events
- Enhancing floodplain and riparian areas
- Moving toward rainfall volume management
- Use of multi-layered urban flood protection strategy
- GI has historically been used for WQ and gray for storage/conveyance

© Arcadis 2025

New Approach to Green and Gray: Multi-Purpose Projects

ARCADIS Design & Consultancy for natural and built assets

- Offsite Hydrology
 - Due to data availability and scope limitations, offsite • areas were not modeled within 2D zone
 - Offsite areas were delineated using available GIS • data, LiDAR, and previous studies
 - Offsite areas hydrologic parameters
 - Areas > 100 acres → Basin Development Factor (BDF)
 - Areas ≤ 100 acres → Rational method

24

© Arcadis 2021

ARCADIS

25

- 50% match between flooded structures based on flood claims and model results
- 75% match between flooded parcels based on flood claims and model results

© Arcadis 2021

ARCADIS

Range of Green/Gray Solutions Evaluated

- No change (baseline)
- Gray infrastructure
- Green infrastructure
- Green/gray hybrid infrastructure

- Green infrastructure on private property
- Gray infrastructure on private property
- Raising of flood-prone properties
- Purchase of flood-prone properties

Large Underground Storage in Parks Captures Stormwater to Recharge Groundwater

Design Criteria & Maintenance Protocols Need to Improve

- The effectiveness of a stormwater management program depends largely on how well and how safely assets perform over time
- Some gray and green drainage systems have failed
- Routine maintenance is not being performed because • of funding constraints and ownership issues
- Performance feedback is needed to address design and maintenance needs and to justify funding needs

51

ARCADIS

GI Has Different Maintenance Needs

GI category	GI types	
Basins	 Dry basins Cisterns and rain barrels Wetlands Oil/water separators 	 Wet basins Vaults and swirl concentrators Forebays
Swales, strips, stream restoration	SwalesOutfall treatment, level spreaders	Vegetated stripsStream restoration
Filters	 Surface and subsurface sand filters Landscaped / vegetated roofs Manufactured filters (boxes) 	BioretentionDrain inlet insertsSubsurface gravel wetlands
Infiltrators	Infiltration basinsDry wells	 Bioretention (infiltration) Infiltration trenches and vaults Permeable pavement
Gross pollutant traps and mechanical operations	ScreensBasketsHoods	NetsRacks
Adapted from "Design of Urban Stormwater Controls" (WEF Press, McGraw Hill, 2012)		
© Arcadis 2025		9 January 2025

Lessons Learned from Municipalities Across the U.S.

• Future routine maintenance will be critical to the success of green and/or gray improvements.

57

Lessons Learned from Municipalities Across the U.S. • Take proposed solutions to the public to get feedback and gain buy-in • Provide education on

- Provide education on stormwater management (green vs gray, public vs private, etc.)
- Consider demographics/ community budget when selecting alternatives

Green (natural systems) and
Gray (traditional structures) Infrastructure \widetilde{Pr} is a structure \widetilde{Pr} is a structure</t

9 January 2025

9 January 2025

Lessons Learned from **Municipalities** Across the U.S.

- Political support is critical
- Significant investment is needed
- Well structured programs can provide cost efficiencies
- Use adaptive management approach for continual improvement

<image><image><section-header><table-cell><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><table-row>